

PENN STATE AE SENIOR CAPSTONE PROJECT CHERRY Q. LU | CONSTRUCTION OPTION **ADVISOR: RAY SOWERS**

CHERRY Q. LU | CONSTRUCTION OPTION

Project Team
Owner: McKeesport Area School District
Architect: JC Pierce LLC.
Construction Manager: PJ Dick, Inc.
General Contractor: Gurtner Construction
Civil Engineers: Phillips & Associates, Inc.
Structural & MEP Engineers: Loftus Engineers
Environmental Engineers: American Geosciences,
Inc.

- Project Introduction
- Analysis 1: LEED Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results
- III. Analysis 2: Value Engineering
 - I. Problem Identification
 - II. Case Studies
 - III. Results: Cost Analysis
 - IV. Electrical Breadth
 - V. Structural Breadth
- IV. Analysis 3: Schedule Acceleration
 - I. Problem Identifications
 - II. Results
- V. Analysis 4: BIM Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results
- VI. Conclusion
- VII. Acknowledgements

LOFTUS ENGINEERING, INC.

PROJECT BACKGROUND

Project Background

Location: 1600 Cornell St, McKeesport, PA

Occupancy: Educational

Total Levels: 3 stories

Size: 127,000 GSF

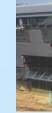
Dates of Construction: February 2013-January 2014

Building Cost: \$28 million

Project Delivery Method: Design-Bid-Build

LEED Feature

Geothermal System


Grey Water Capture System

Solar Shading

Day Lighting

Wind Turbines

SITE DURING CONSTRUCTION

- . Project Introduction
- I. Analysis 1: LEED Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results
- III. Analysis 2: Value Engineering
 - I. Problem Identification
 - II. Case Studies
 - III. Results: Cost Analysis
 - IV. Electrical Breadth
 - V. Structural Breadth
- IV. Analysis 3: Schedule Acceleration
 - I. Problem Identifications
 - II. Results
- V. Analysis 4: BIM Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results
- VI. Conclusion
- VII. Acknowledgements
- VIII. Appendices

Electrical System

- Supply: 480/277 V from supply with 208/120
 - step-down transformer
- Lighting: Fluorescent with LED, HID, incandescent
- Controls: Astronomical timer control for exterior; occupancy sensors for interior

Structural System

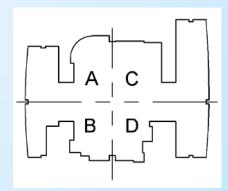
- Foundation: 4" Spread footing shallow foundation
- Superstructure: Structural steel with concrete slab
- Roofing System: Composed structural steel system with metal decking.

Schedule

- C
- Con

- Cost
- Constr Constr
- Trade Conci Earth Electi Mech Equip Other

PROJECT BACKGROUND


Schedule Breakdown				
Phase	Start Date	art Date End Date		
			n	
Project Planning Phase	3/24/2009	12/9/2009	260	
Schematic Design Phase	12/9/2009	6/1/2010	139	
Design Development Phase	3/1/2010	9/6/2010	144	
onstruction Documents Phase	4/23/2010	5/5/2011	270	
Bidding Phase	5/25/2010	8/225/11	328	
struction Administration Phase	7/8/2010	3/24/2014	968	
Construction Phase	5/3/2012	12/13/2013	648	
Substantial Completion	12/13/2013	12/13/2013	1	
Project Close-out	13/13/2013	3/24/2014	110	

Project Financial Data					
	\$				
ruction Cost	\$23,450,000	Total Cost	28,084,0	00.00	
ruction Cost/Sq Ft	\$184.65	Total Cost/Sq Ft	\$	221.13	

Major Building System Cost				
e	Value	Value/Sq Ft		
crete	\$7,035,000.0	\$55.39		
hwork	\$2,814,000.00	\$22.16		
trical	\$4,924,500.00	\$38.78		
hanical & Plumbing	\$3,986,500.00	\$31.39		
pments	\$2,814,000.00	\$22.16		
ers	\$1,876,000.00	\$14.77		

Project Feature

- Weather impact cause change orders
- Multiple LEED systems
- Long close out time
- Long interior fit-out time
- Long planning phase (hearings)
- Wide spread work sequence for MEP

CONSTRUCTION SEQUENCING DIAGRAM

CHERRY Q. LU CONSTRUCTION OPTION

PRESENTATION OUTLINE:

- Project Introduction
- Analysis 1: LEED Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results
- III. Analysis 2: Value Engineering
 - I. Problem Identification
 - II. Case Studies
 - III. Results: Cost Analysis
 - IV. Electrical Breadth
 - V. Structural Breadth
- IV. Analysis 3: Schedule Acceleration
 - I. Problem Identifications
 - II. Results
- V. Analysis 4: BIM Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results
- VI. Conclusion
- VII. Acknowledgements
- VIII. Appendices

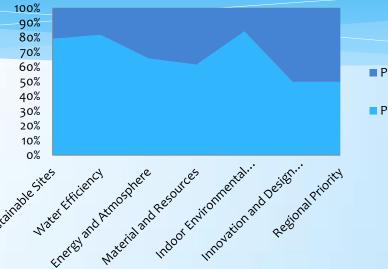
Goal of Analysis I

Current LEED Score Scatter 100% 90% 80% 70% 60% 50% 40% 30% 20% Points Missed Points Earned 10% 0%

Current Design	Points Earned	Points Missed
Sustainable Sites	19	5
Water Efficiency	9	2
Energy and Atmosphere	10	23
Material and Resources	8	5
Indoor Environmental Quality	16	3
Innovation and Design Process	2	4
Regional Priority	2	2
Total Points	66	

•Owner's Goal:

- •District Scientific Education Center
- •State-of-the-Art Facility


•Current Design:

•Renewable Energy Only for Showcase Purpose

•Area of Study:

- •Possibility of Renewable Energy Production for self-usage
- •LEED Improvement from the update
- •LEED in Public School

Analysis I: LEED Implementation

Potential Design	Points Earned	Points Missed
Sustainable Sites	19	5
Water Efficiency	9	2
Energy and Atmosphere	25	13
Material and Resources	8	5
Indoor Environmental Quality	16	3
Innovation and Design Process	3	3
Regional Priority	2	2
Total Points	82	

Potential LEED Score Scatter

Points Missed

Points Earned

CHERRY Q. LU CONSTRUCTION OPTION

PRESENTATION OUTLINE:

- Project Introduction
- Analysis 1: LEED Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results
- III. Analysis 2: Value Engineering
 - I. Problem Identification
 - II. Case Studies
 - III. Results: Cost Analysis
 - IV. Electrical Breadth
 - V. Structural Breadth
- IV. Analysis 3: Schedule Acceleration
 - I. Problem Identifications
 - II. Results
- V. Analysis 4: BIM Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results
- VI. Conclusion
- VII. Acknowledgements

VIII. Appendices

Research Result I:

MAP OF CURRENT HOST SCHOOLS FOR WFS PROGRAM

•Penn State University is Home to:

- •Purpose:

 - •Technical consults.
- •Goals:

 - related activities.

Analysis I: LEED Implementation

Pennsylvania Wind for School Project(WFSP)

•Wind Application Center (WAC) for Pennsylvania

•Help host schools seek funding.

•Work with selected schools to raise funding for and install small wind turbine (<2kw) •Students and Faculty assist in assessment, design and installation of wind system. •Provide teacher training and hands-on curricula for interactive and interschool wind-

•Supported by:

•The Wind Powering America Program •The National Renewable Energy Laboratory (NREL) •Department of Energy's (DOE's) Energy Efficiency and Renewable Energy Office •The National Wind for Schools program

CHERRY Q. LU CONSTRUCTION OPTION

PRESENTATION OUTLINE:

- Project Introduction
- Analysis 1: LEED Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results
- III. Analysis 2: Value Engineering
 - I. Problem Identification
 - II. Case Studies
 - III. Results: Cost Analysis
 - IV. Electrical Breadth
 - V. Structural Breadth
- IV. Analysis 3: Schedule Acceleration
 - I. Problem Identifications
 - II. Results
- V. Analysis 4: BIM Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results
- VI. Conclusion
- VII. Acknowledgements
- VIII. Appendices

Case Study I: **Boyce Middle School**

Similarities:

- LEED Certified Public Middle School
- Located in Allegheny County
- Hearing and decision process for LEED

Uniqueness:

- School Board is the driving force of LEED
- Established a LEED study committee
- A vehicle for local business and professional leaders to lend their expertise toward school construction.

Lessons Learned:

- School Board initiative
- Financial benefit from industry donors
- Message sent to the students and the community about social responsibility,
- science and the benefits of quality learning environment.
- Role-Model for Twin Rivers Project

BOYCE MIDDLE SCHOOL

CHERRY Q. LU CONSTRUCTION OPTION

PRESENTATION OUTLINE:

- Project Introduction
- Analysis 1: LEED Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results
- III. Analysis 2: Value Engineering
 - I. Problem Identification
 - II. Case Studies
 - III. Results: Cost Analysis
 - IV. Electrical Breadth
 - V. Structural Breadth
- IV. Analysis 3: Schedule Acceleration
 - I. Problem Identifications
 - II. Results
- V. Analysis 4: BIM Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results
- VI. Conclusion
- VII. Acknowledgements
- VIII. Appendices

Case Study II: Mount Nittany Elementary/Intermediate School

Similarities:

- LEED Certified Public School
- Two schools in one campus
- Hearing and decision process for LEED

Uniqueness:

- Innovation)

Lessons Learned:

- Early planning

Analysis I: LEED Implementation

Participant of Penn WFS Project


• Received funding of \$ 16,000 (= \$ 5,000 from West Penn Power Sustainable Energy Fund(WPPSEF) + \$5,000 from Lowes Educational Toolbox + \$5,000

from Citizen Power + \$ 1,000 from the Superintendent's Fund for Instruction

• Education program with support from Penn State University

• Financial assistance from WFS Project

• Education curricula from both schools

CHERRY Q. LU CONSTRUCTION OPTION

PRESEN	NTATION	OUTLINE:
--------	---------	----------

- Project Introduction
- Analysis 1: LEED Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results
- III. Analysis 2: Value Engineering
 - I. Problem Identification
 - II. Case Studies
 - III. Results: Cost Analysis
 - IV. Electrical Breadth
 - V. Structural Breadth
- IV. Analysis 3: Schedule Acceleration
 - I. Problem Identifications
 - II. Results
- V. Analysis 4: BIM Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results
- VI. Conclusion
- VII. Acknowledgements
- VIII. Appendices

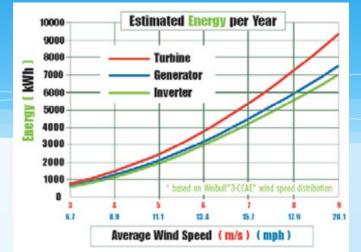
Rated Power	600 w
Maximum Output Power	800 w
Output Voltage	48 V
Rotor Height	1.6 m (5.2 ft)
Rotor Diameter	1.2 m (3.9 ft)
Start-up Wind Speed	1.5 m/s (3.4 mph)
Rated Wind Speed	10 m/s (22.3 mph)
Survival Wind Speed	50 m/s (111.5 mph)
Generator	Permanent Magnetic Generator
Generator Efficiency	>0.96
Turbine Weight	18 kg (39.6lbs)
Noise	<45dB(A)
Temperature Range	-20°C to +50°C
Design Lifetime	20 Years

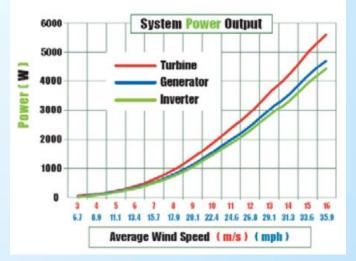
Warranty

Standard 5 Years

Current Turbine:

Propose Turbine:


Roof-Top Wind Turbine for Energy Production is Recommended.


• Showcase purpose only

• Vertical axis turbines from Clean Field Energy

• Small unit vertical axis turbines from Clean Field Energy

• Energy production purpose

ENERGY & POWER OUTPUT

CHERRY Q. LU CONSTRUCTION OPTION

PRESENTATION OUTLINE:

- Project Introduction
- Analysis 1: LEED Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results
- III. Analysis 2: Value Engineering
 - I. Problem Identification
 - II. Case Studies
 - III. Results: Cost Analysis
 - IV. Electrical Breadth
 - V. Structural Breadth
- IV. Analysis 3: Schedule Acceleration
 - I. Problem Identifications
 - II. Results
- V. Analysis 4: BIM Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results
- VI. Conclusion
- VII. Acknowledgements
- VIII. Appendices

Cost Analysis without Funding

Assumptions

- One unit every 4 square feet
- The impact of the installation to the structural system will be analyzed as the structural breadth.
- The capacity of a unit from Clean Field is = 23% of its maximum output.
- Electricity prices = 0.05 \$/Kwh (based on conservative estimate)
- Crane cost = \$750 per day + \$200 per hour

The total energy production estimation =

units.

- number of units * maximum production of each
- unit * operation time * system capacity
- Thus, 18* 800w * 8766hr * 23% = **29033 Kwh**
 - \$ 0.05 * 29033 = **\$ 1452**

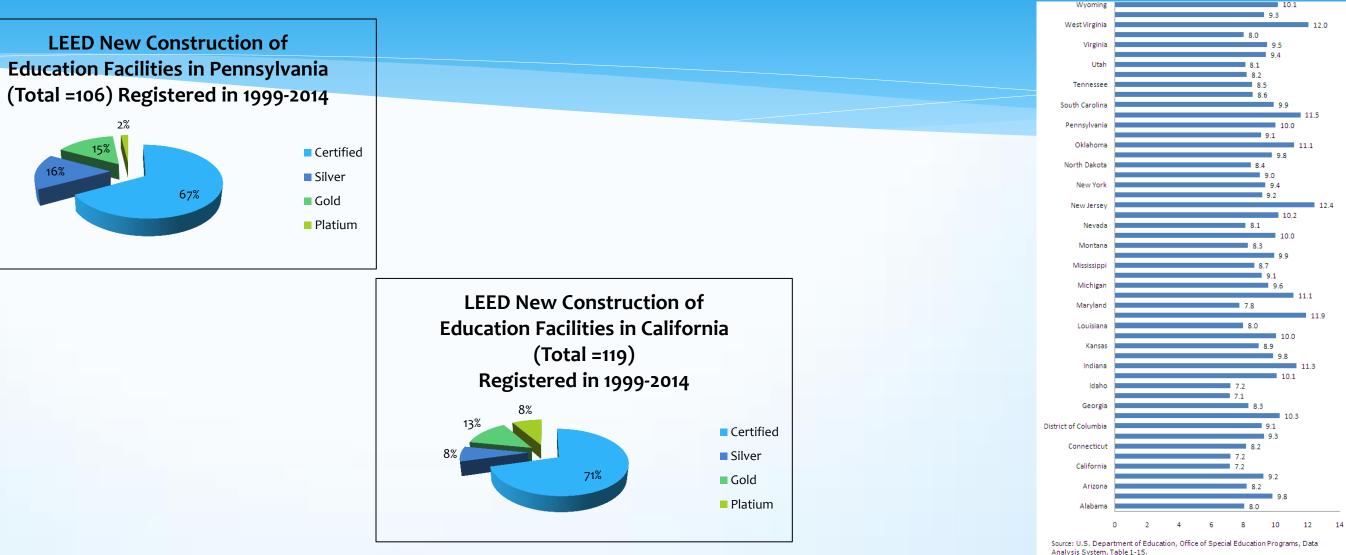
Cost saving of \$1452/year from the installation of rooftop wind turbine

CHERRY Q. LU CONSTRUCTION OPTION

PRESENTATION OUTLINE:

- Project Introduction
- Analysis 1: LEED Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results
- III. Analysis 2: Value Engineering
 - I. Problem Identification
 - II. Case Studies
 - III. Results: Cost Analysis
 - IV. Electrical Breadth
 - V. Structural Breadth
- IV. Analysis 3: Schedule Acceleration
 - I. Problem Identifications
 - II. Results
- V. Analysis 4: BIM Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results
- VI. Conclusion
- VII. Acknowledgements
- VIII. Appendices

LEED in Public School


Factors considered for LEED incentives:

- Aged 6-21 population of each state
- GDP of each state

Responsibilities of Construction Management

Team:

- Support LEED projects for long term saving on operation and maintenance cost; short payback period.
- Raise the awareness of the benefits of LEED • implementation to public schools
- Help engage industry donor to assistant with the development of LEED

Analysis I: LEED Implementation

Note: Percentages shown represent percentage of overall student population

AGED 6-21 POPULATION PERCENTAGE IN EA. STATE

CHERRY Q. LU CONSTRUCTION OPTION

PRESENTATION OUTLINE:

- Project Introduction
- Analysis 1: LEED Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results

III. Analysis 2: Value Engineering

- I. Problem Identification
- II. Case Studies
- III. Results: Cost Analysis
- IV. Electrical Breadth
- V. Structural Breadth
- IV. Analysis 3: Schedule Acceleration
 - I. Problem Identifications
 - II. Results
- V. Analysis 4: BIM Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results
- VI. Conclusion
- VII. Acknowledgements
- VIII. Appendices

Goal of Analysis II

Increase project value by:

- Possibility of upsizing electrical distribution system
- Implementation of Wind energy production

Cost Analysis without Funding

Assumptions

- One unit every 4 square feet
- The capacity of a unit from Clean Field is = 23% of its maximum output.
- estimate)
- Crane cost = \$750 per day + \$200 per hour

Analysis II: Value Engineering

- The impact of the installation to the structural system
 - will be analyzed as the structural breadth.

Electricity prices = 0.05 \$/Kwh (based on conservative

Additional Cost of Roof-Top Wind Turbine System			
ltem	Unit Cost	Quantity	Cost
Material	800	18	14400
Labor	30	18	540
Equipment (Crane)	283	9	2550

- Total cost from the calculation in table above = **\$17490**
- Total cost / cost saving per year = the payback period of the •

system = 12 years.

- 12 yrs / 20 yrs = 60%
- This is 60% of the system's designed lifetime.

CHERRY Q. LU CONSTRUCTION OPTION

PRESENTATION OUTLINE:

- Project Introduction
- Analysis 1: LEED Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results
- III. Analysis 2: Value Engineering
 - I. Problem Identification
 - II. Case Studies
 - III. Results: Cost Analysis
 - IV. Electrical Breadth
 - V. Structural Breadth
- IV. Analysis 3: Schedule Acceleration
 - I. Problem Identifications
 - II. Results
- V. Analysis 4: BIM Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results
- VI. Conclusion
- VII. Acknowledgements
- VIII. Appendices

R-T Turbine Cost Analysis with Funding

Assumptions

- One unit every 4 square feet
- The impact of the installation to the structural system will be analyzed as the structural breadth.
- The capacity of a unit from Clean Field is = 23% of its maximum output.
- Electricity prices = 0.05 \$/Kwh (based on conservative estimate)
- Crane cost = \$750 per day + \$200 per hour

Conservative Es

- Estimate fu
- **Power Sust**
- from Lowes
- Power

The addition of roof-top wind turbine system is cost effective and Serves the goal of value engineering by improving system value with reasonable cost addition.

Estimate of Funding/Grants:
unding of \$ 15,000 = \$ 5,000 from West Penn
tainable Energy Fund(WPPSEF) + \$5,000
s Educational Toolbox + \$5,000 from Citizen

```
• Total cost = $17490 - $ 15000 = $ 2, 490
```

Additional Cost of Roof-Top Wind Turbine System			
ltem	Unit Cost	Quantity	Cost
Material	800	18	14400
Labor	30	18	540
Equipment (Crane)	283	9	2550

- Total cost / cost saving per year = the payback period of the system = 12 years.
- 2 yrs / 20 yrs = 10%
- This is 10% of the system's designed lifetime.

CHERRY Q. LU CONSTRUCTION OPTION

PRESENTATION OUTLINE:

- Project Introduction
- Analysis 1: LEED Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results
- III. Analysis 2: Value Engineering
 - I. Problem Identification
 - II. Case Studies
 - III. Results: Cost Analysis
 - IV. Electrical Breadth
 - V. Structural Breadth
- IV. Analysis 3: Schedule Acceleration
 - I. Problem Identifications
 - II. Results
- V. Analysis 4: BIM Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results
- VI. Conclusion
- VII. Acknowledgements
- VIII. Appendices

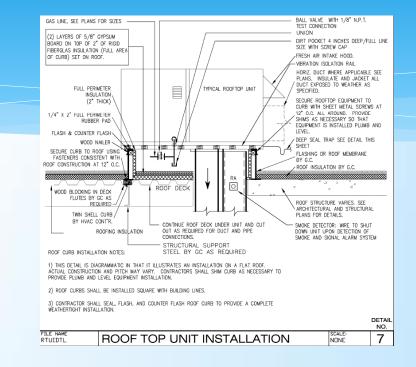
Project Team

Assumptions

- One unit every 4 square feet
- Each unit = 40 lbs
- Wind turbines will be sitting on the existing design of roof curb.
- Same installation method as roof top mechanical units.

• W= 1.2 (D_L)= 1.2*40 = 48 lbs

- 48 lbs/(4'*4') = 3 PSF
- 20 + 3 = 23 PSF


3" Normal Wei

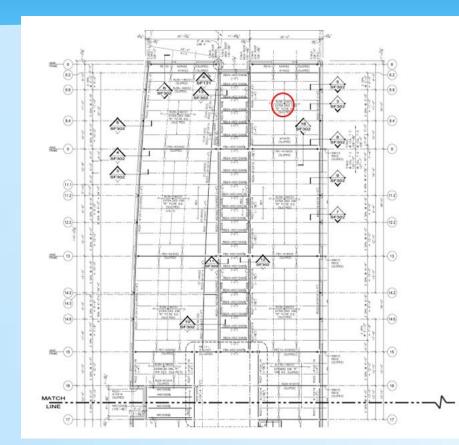
Mechanical Un Build-Up Roofir Total Dead Load Roof Live Load Total Live Load

Structural Breadth

Dead Load from Roof Top Mechanical Units and Wind Turbine Units

Live & Dead Load on Roof	
Item	Load (PSF)
tht Concrete(144 PCF)	96
ts Including Roof-Top Turbine Units	23
g System	20
	139
	20
	20

CURRENT DESIGN OF ROOF TOP MECHANICAL UNIT INSTALLATION



CHERRY Q. LU | CONSTRUCTION OPTION

PRESENTATION OUTLINE:

- Project Introduction
- Analysis 1: LEED Implementation
 - . Problem Identification
 - Case Studies
 - III. Results
- III. Analysis 2: Value Engineering
 - I. Problem Identification
 - II. Case Studies
 - III. Results: Cost Analysis
 - IV. Electrical Breadth
 - V. Structural Breadth
- IV. Analysis 3: Schedule Acceleration
 - I. Problem Identifications
 - II. Results
- V. Analysis 4: BIM Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results
- VI. Conclusion
- VII. Acknowledgements

Assumed Typical Bay Calculated in Zone A

- Factored Distributed Load: W = (1.2)(DL) + (1.6)(LR) Wu = (1.2)(139 PSF) + (1.6)(20 PSF) = 198.8 PSF Deflection (ACI 318-11): Ln/33<Thickness of slab 20'(12"/1')/33 <8" = 7.2727"<8"
- Max Vertical Deflection of Roof Deck: 1/240 of span 1/240*20ft*12 in/ft = 1"< TL/180 = 1.39"
- Ultimate Shear
- $Vu = (312 \text{ PSF})(18.60' \times 18.09') = 64,603 \text{ lbs.}$ • Critical Shear $Vc = 4\lambda$ bod c f' • bo = 2 (24" + 8") + 2 (21" + 8") = 122"
- - d = (8 0.75)
 - Vc = 4(1) (122")(8-0.75) = 250,174.3792 lbs. psi 5000
- Punching Shear
 - Vu < \$\phi\$ Vc
 - 64,603 lbs. < (0.75) x (250,174.38 lbs.) •
 - 64,603 lbs. < 187,630.78 lbs

Structural Breadth

Current design meets design criteria.

TYPE "1.5 CF" COMPOSITE FLOOR DECK SLAB

SECTION PROPERTIES FY=40 KS DECK DESIGN WT I" I" S" S"

TYPE	THICKNESS	PSF	IN."	IN.*	IN.ª	IN.ª
22	.0295 IN.	1.61	.153	.186	.188	.198
20	.0358 IN.	1.95	.199	.226	.233	.242
18	.0474 IN.	2.56	.288	.300	.316	.320

GENERAL INFORMATION

SLAB THICKNESS	4 ¹ /2"	5"	51/4"	51/2*	6*	61/4"	6 ^t /2*
Vol. Conc. Yds/100SF	1.09	1.24	1.32	1.40	1.55	1.63	1.71
Conc. Wt. PSF (Normal Wt.)	42	48	51	54	60	63	66
Conc. Wt. PSF (Light Wt.)	34	38	41	43	48	50	53
Recommended W.W.F. 6*x6*	W1.4xW1.4	W1.4xW1.4	W1.4xW1.4	W2.1xW2.1	W2.1xW2.1	W2.1xW2.1	W2.1xW2.1

	DEPTH	YPE	U	LOWAB NSHORE EAR SP	D					SUP		SED LIV		, PSF				
	SLAB DE	DECKTY	1 SPAN	2 SPAN	3 SPAN	6-0	6-6	7-0	7-6	8-0	8-6	9-0	9-6	10-0	10-6	11-0	11-6	12-0
6	4"	22	4.11	6-7	6-8	373	307	255	213	178	150	126	106	88	74	61	49	40
8	(t=21/2)	18	6-11	10-3	10-9	•		382	361	309	266	230	199	173	150	131	114	99
ETE (14	4 ¹ /2" (t=3)	22 20 18	4-8 5-5 6-7	6-4 7-4 8-10	6-5 7-5 9-0	:	371	308 385	256 323	214 273 377	179 232 323	150 197 279	125 168 241	104 143 209	86 121 181	70 102 158	56 86 137	44 72 118
T CONCRETE	5* (t=3 ¹ /2)	22 20 18	4-6 5-2 6-3	6-0 7-0 8-5	6-1 7-1 8-7	:	:	360	299 350	249 320	207 271 381	173 229 328	143 194 283	118 165 245	96 139 212	78 117 183	61 97 158	47 80 137
L WEIGHT	5 ¹ /2* (t=4)	22 20 18	4-4 5-0 6-0	5-10 6-9 8-1	5-11 6-10 8-3	:	÷	:	340	282 366	234 308	194 260 377	159 220 324	130 185 280	105 155 241	83 129 208	64 107 179	48 87 153
NORMAL	6* (t=4 ¹ / ₂)	22 20 18	4-2 4-9 5-9	5-7 6-6 7-9	5-8 6-7 7-11	÷	:	:	380	313	258 345	212 290	173 243 364	140 204 313	112 169 269	87 140 231	65 114 198	46 91 169

TABLE 9.5(c)—MINIMUM THICKNESS OF SLABS WITHOUT INTERIOR BEAMS*

	Witho	ut drop pa	anels‡	With	drop pan	els‡
	Exterior	panels	Interior panels	Exterior	panels	Interior panels
f _y , psi [†]	Without edge beams	With edge beams§		Without edge beams	With edge beams§	
40,000	ℓ _n /33	ℓ _n /36	ℓ _n /36	ℓ _n /36	ℓ _n /40	ℓ _n /40
60,000	ℓ _n /30	ℓ _n /33	ℓ _n /33	ln/33	<i>ℓ</i> _n /36	ℓ _n /36
75,000	ℓ _n /28	ℓ _n /31	ℓ _n /31	ℓ _n /31	ℓ _n /34	ℓ _n /34
Transferration			he leasth a	6 al	In the Inc.	a discussion

For two-way construction, ℓ_n is the length of clear span in the long direction neasured face-to-face of supports in slabs without beams and face-to-face o beams or other supports in other cases.

[†]For f_v between the values given in the table, minimum thickness shall be determined by linear interpolation

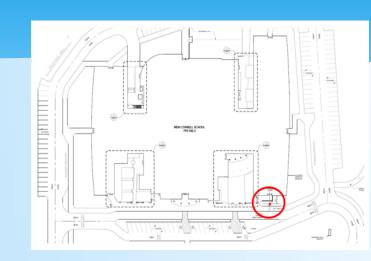
[‡]Droo panels as defined in 13.2.5.

Slabs with beams between columns along exterior edges. The value of a for the edge beam shall not be less than 0.8.

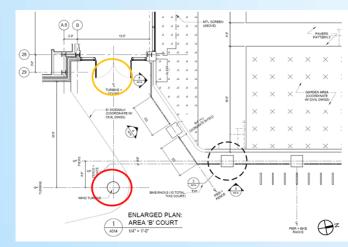
9.5.3.2 - For slabs without interior beams spanning between the supports and having a ratio of long to short span not greater than 2, the minimum thickness shall be in accordance with the provisions of Table 9.5(c) and shall not be less than the following values:

 (a) Slabs without drop panels as
defined in 13.2.5 5 in.;
(b) Slabs with drop panels as defined
in 13.2.5

Structural Concrete Building Code (ACI 318-11)



CHERRY Q. LU | CONSTRUCTION OPTION


PRESENTATION OUTLINE:

- Project Introduction
- Analysis 1: LEED Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results
- III. Analysis 2: Value Engineering
 - I. Problem Identification
 - II. Case Studies
 - III. Results: Cost Analysis
 - IV. Electrical Breadth
 - V. Structural Breadth
- IV. Analysis 3: Schedule Acceleration
 - I. Problem Identifications
 - II. Results
- V. Analysis 4: BIM Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results
- VI. Conclusion
- VII. Acknowledgements

VIII. Appendices

Pole-Mounted Wind Turbine Location

Pole-Mounted Turbine/Electrical Room

SECT NO	CKT NO	GMO HEIGHT	DEVICE/FRAME RATING	TRIP AMP	FUSE/ TRIP	#P	DESIGNATION	Proposed Size Phase		NINAL Design PHASE WIRE RANGE	QTY	NEUT. WIRE RANGE
								Legs				
1	UCT	-	3000A	-	-	-	DUQUESNE LIGHT	-	9	-	9	-
2	M1	-	NW 3000A Plug A	3000A	A-LSIG	ЗP	Main Breaker	2/0	-	3/0 - 750 kcmil	-	3/0 - 750 kcmil
3	1	4.5 in	JJ	200A	-	ЗP	Elevator B	1/0	1	3/0 - 350 kcmil	1	#6 - 350 kcmil
3	2	4.5 in	JJ	200A	-	ЗP	Elevator A	1/0	1	3/0 - 350 kcmil	1	#6 - 350 kcmil
3	3	4.5 in	JJ	225A	-	ЗP	Panel M1B	1/0	1	3/0 - 350 kcmil	1	#6 - 350 kcmil
3	4	4.5 in	JJ	225A	-	ЗP	Panel M2A	1/0	1	3/0 - 350 kcmil	1	#6 - 350 kcmil
3	5	4.5 in	JJ	225A	-	3P	Panel M2B	1/0	1	3/0 - 350 kcmil	1	#6 - 350 kcmil
3	6	7.5 in	LC	600A	-	ЗP	Motor Control	2/0	2	4/0 - 500kcmil	2	4/0-500kcmil
3	7	7.5 in	LC	350A	-	3P	CH - 1	2/0	2	4/0 - 500kcmil	1	#4 - 600 kcmil
3	8	4.5 in	JJ	225A	-	3P	Panel M1A	1/0	1	3/0 - 350 kcmil	1	#6 - 350 <u>kcmil</u>
3	9	4.5 in	JJ	225A	-	3P	Panel M1C	1/0	1	3/0 - 350 kcmil	1	#6 - 350 kcmil
3	10	4.5 in	JJ	225A	-	ЗP	DOAS-2	1/0	1	3/0 - 350 kcmil	1	#6 - 350 kcmil
3	11	4.5 in	JJ	225A	-	ЗP	ATS-LS	1/0	1	3/0 - 350 kcmil	1	#6 - 350 kcmil

UPSIZED THE DISTRIBUTION SYSTEM

																									Ampacity	1. 199
	TABI		RECOR	AMENE	ED MA	XIMU	MNU	MBER	OF	COND	UCTO	RS I	MET	AL (E	MT) AN	ID PLA	ASTIC (PVC) (CONDU	JIT			Size	60°C	75°C	90°
			LESS I	ONDUC HAN T	HOSE	TYPIC	ALLY	ESTA	BLISH	IED A	S MA	XIMU	M VAL	UES I	N THE	ELEC	TRICA	CODE	THE				(AWG or kcmil)	140°F	167°F	194°
	10.3		PULLIN	IG CON	NDUCT	ORS T	M VAI HRO	LUES UGH (UIT).	ALLO	OW FO	DR LE	SS CL	JMBEF	SOME	E INST/	LLATIO	DN (E.	G.,			14 12	15	15	1
		1112.52							Miro	Dino (TLINAIN	THE			or Size				195	192.141	in and i	3D)(12	10	20 30	20 30	2
									whe .	Size (THVI	, trar	IN) CO	nauct	or Size		lout re-	and the	Linki B	hund	No.	flavin	8	40	50	5
	1000	201.00			AV	VG		0.75							TEDHCI.	ŀ	ccmil	DUCH	lan.anl				6	55	65	7
rade	e Size	14	12	10	8	6	4	3	2	1	1/0	2/0	3/0	4/0	250	300	350	400	500	600	700	750	4	. 70	85	9
	1/2				-	1000	01.01						1.1.1		19.19	11.							3	85	100	11
	3/2	6	5	3	2	1	1	1	1	1	1	-	-	1	—	-		-		-	-	1 TOTAL	2	95	115	13
	74	11	8 13	5	3	2	1	1	1	1	1	1	1	1	_				-	-	-		1	110	130	15
-	1%	31	23	14	5	4	2	2	2	1	1	1	1	1	1	1	1	-	—		-		1/0	125	150	17
(EMI)	12	42	31	19	11	6	4	3	3	2	2	1	1	1	1	1	1	1	1	1	1		2/0	145	175	19
<u> </u>	2	69	51	32	18	13	5	4	4	3	2	2	1	1	1	1	1	1	1	1	1	1	3/0	165	200	22
Metal	212	121	88	56	32	23	14	10	6	4	4	3	3	2	2	1	1	1	1	1	1	1	4/0	195	230	26
ž	3	182	113	84	48	35	14 22	12 18	10	8	6	5	4	4	3	3	2	2	2	1	1	1	250	215	255	29
	35	238	174	110	63	46	28	24	15 20	15	10	8	9	6	5	4	3	3	3	2	2	2	300	240	285	32
	4	304	222	140	81	58	36	30	20		13		9	-	6	5	5	4	3	3	2	2	350	260	310	35
-	-	004	to Colo	140	01	30	00	30	20	19	16	13	11	9	8	/	6	5	4	4	3	3	400	280	335	38
		1.1																					500	320	380	43

Electrical Breadth

Γ								POWER STY	LE (2ED	-2 SWITCHBO	ARD)	
	ста	v7	GMD	DEVICE/FRAVE	TRIP	FUSE/					LUG INF	ORMA	ATION	
Ň	õ N	66	нёсэнт	RATING	AMP	TRIP	<i>≢</i> P	DESIGNATION	N/P	QTY	PHASE WIRE RANGE	QTY	NEUT. WIRE RANGE	ACCESSORIES
	U	ст	-	3000A	-	-	-	DUQUESNE LIGHT	No	9	-	9	-	
	: 1	M1	-	NW 3000A Plug A	3000A	A-LSIC	32	Main Breaker	Yes	-	3/0 - 750 kcmil	-	3/0 - 750 kcmil	GF,S0E1,0F4
1	,	1	4.5 in	LL.	200A	-	39	Devator B	Yes	1	3/0 - 350 kemil	1	#6 - 350 komil	
		2	4.5 in	LL LL	200A	-	39	Devator A	Yes	1	3/0 - 350 kemil	1	#6 - 350 kcmil	
1		3	4.5 in	لىل	225A	-	32	Panel M18	Yes	1	3/0 - 350 kcmil	1	#6 - 350 kemil	
		4	4.5 in	لال	225A	-	32	Panel M2A	Yes	1	3/0 - 350 kcmil	1	#6 - 350 komil	
1	1	5	4.5 in	لىل	225A	-	39	Panel M28	Yes	1	3/0 - 350 kcmil	1	#6 - 350 komil	
1		6	7.5 in	FC.	600A	-	39	Motor Control Center	Yes	2	4/0 - 500kcmil	2	4/0 = 500kcmil	
1		7	7.5 in	LC	350A	-	32	CH = 1	Yes	2	4/0 - 500kcmil	1	#4 - 600 komil	
1	, ,	8	4.5 in	لېل	225A	-	32	Panel M1A	Yes	1	3/0 - 350 kcmil	1	#6 - 350 komil	
1		9	4.5 in	لىل	225A	-	32	Panel M1C	Yes	1	3/0 - 350 kcmil	1	#6 - 350 komil	
1	, 1	10	4.5 in	JJ	225A	-	32	D0AS-2	Yes	1	3/0 - 350 kcmil	1	#6 - 350 kcmil	
1	1	11	4.5 in	LL.	225A	-	39	ATS-LS	Yes	1	3/0 - 350 kcmil	1	#6 - 350 komil	
1	, ,	12	4.5 in	تد	175A	-	32	HUMD - 1	Yes	1	1/0 - 4/0 AWC	1	#6 - 350 komil	
		13	4.5 in	нл	100A	-	32	Panel LP18	Yes	1	#14 - 3/0 AWG	1	#14 - 1/0 ANG	
F	1	14	4.5 in	нл	100A	-	32	Panel LP1D	Yes	1	#14 - 3/0 AWG	1	#14 - 1/0 ANG	
	1	15	4.5 in	нJ	100A	-	39	Panel MK	Yes	1	#14 - 3/0 AWG	1	#14 - 1/0 ANG	
		16	4.5 in	нı	100A	-	39	Panel LP28	Yes	1	#14 - 3/0 AWG	1	#14 - 1/0 ANG	
	1	17	4.5 in	нı	150A	-	32	т — ка	Yes	1	#14 - 3/0 AWG	1	#6 - 350 komil	
F		18	4.5 in	нл	150A	-	32	DOAS - 1	Yes	1	#14 - 3/0 AWG	1	#6 - 350 komil	
		19	4.5 in	нJ	100A	-	39	Panel LP2A	Yes	1	#14 - 3/0 AWG	1	#14 - 1/0 ANG	
1	1 2	20	4.5 in	нı	100A	-	39	ATS - EQ	Yes	1	#14 - 3/0 AWG	1	#14 - 1/0 ANG	
	1	21	4.5 in	нı	100A	-	39	Panel LP1C	Yes	1	#14 - 3/0 AWG	1	#14 - 1/0 ANG	
	1	22	4.5 in	ы	100A	-	32	Panel LP1G	Yes	1	#14 - 3/0 AWG	1	#14 - 1/0 ANG	
F	1	23	4.5 in	нJ	50A	-	39	DFC - 1	Yes	1	#14 - 3/0 AWG	1	#14 - 1/0 ANG	
	1 2	24	4.5 in	нı	70A	-	39	T - CP1A/CP1D	Yes	1	#14 - 3/0 AWG	1	#14 - 1/0 ANG	
1	1 2	25	4.5 in	нı	100A	-	39	SPARE	Yes	1	#14 - 3/0 AWG	1	#14 - 1/0 ANG	
1	1	26	4.5 in	н	100A	-	39	Panel M1G	Yes	1	#14 - 3/0 AWG	1	#14 - 1/0 ANG	
	1	27	4.5 in	нJ	100A	-	39	SPARE	Yes	1	#14 - 3/0 AWG	1	#14 - 1/0 ANG	
F	1	28	4.5 in	ΗJ	100A	-	3P	SPARE	Yes	1	#14 - 3/0 ANG	1	#14 - 1/0 AWG	
	1	29	4.5 in	нı	100A	-	3P	SPARE	Yes	1	#14 - 3/0 ANG	1	#14 - 1/0 AWG	
	1	30	4.5 in	HJ	100A	-	3P	Panel LP1A	Yes	1	#14 - 3/0 AWG	1	#14 - 1/0 AMG	
1		31	4.5 in	HJ	60A	-	3P	TVSS	Yes	1	#14 - 3/0 AWG	1	#14 - 1/0 ANG	
	1 2	32	4.5 in	HJ	50A	-	3P	DFC - 2	Yes	1	#14 - 3/0 AWG	1	#14 - 1/0 AWG	

CURRENT SWITCHBOARD SCHEDULE

DESIGN PRINCIPLE

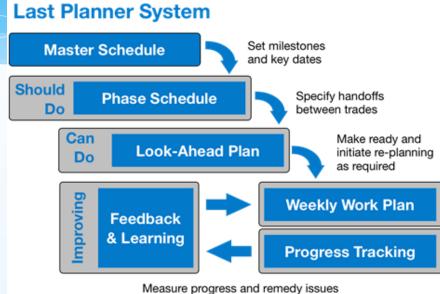
CHERRY Q. LU CONSTRUCTION OPTION

PRESENTATION OUTLINE:

- Project Introduction
- Analysis 1: LEED Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results
- III. Analysis 2: Value Engineering
 - I. Problem Identification
 - II. Case Studies
 - III. Results: Cost Analysis
 - IV. Electrical Breadth
 - V. Structural Breadth
- IV. Analysis 3: Schedule Acceleration
 - I. Problem Identifications
 - II. Results
- V. Analysis 4: BIM Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results
- VI. Conclusion
- VII. Acknowledgements
- VIII. Appendices

Goal of Analysis III

Improve project schedule by:


- Methods to control unexpected weather impact
- Possibility of implementing SIPS method
- Possibility of implementing Last Planner System

Project Features

- Tight schedule time frame of 21 months construction for high-performance facility with LEED implementations
- Protection of \$ 156,275 from insufficient sedimentation and erosion control on site • 3 weeks of addition of scope
- Symmetric building structure provides possibility of implementing SIPS
- LEAN construction method might help to recover project schedule

Analysis III: Schedule Acceleration

• Addition of project value per the order of Penn Department of Environmental

Will	
Do	
Doing	
& Done	

CHERRY Q. LU CONSTRUCTION OPTION

PRESENTATION OUTLINE:

- Project Introduction
- Analysis 1: LEED Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results
- III. Analysis 2: Value Engineering
 - I. Problem Identification
 - II. Case Studies
 - III. Results: Cost Analysis
 - IV. Electrical Breadth
 - V. Structural Breadth
- IV. Analysis 3: Schedule Acceleration
 - I. Problem Identifications
 - II. Results
- V. Analysis 4: BIM Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results
- VI. Conclusion
- VII. Acknowledgements
- VIII. Appendices

Scenario I:Precautionary and Reaction Plan

Project Features

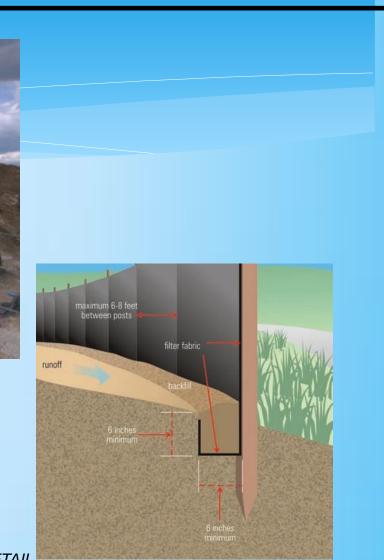
- Urban surrounding
- Relative high elevation
- Site takes up an entire block
- Clear material delivery routes

Proposed System

- Slope stakes: interval of 4'
- Normal silt fence for high elevation than surrounding

Analysis Components

- Cost impact for the proposed system
- Schedule impact for the proposed system
- Cost and schedule compared with the original system per EPA's order


Estimate Based on

Analysis III: Schedule Acceleration

• RS Means Green Building Cost Data 2014 (31 25 14.16)

SOIL RUN-OFF TO NEIGHBORING ROAD

CHERRY Q. LU CONSTRUCTION OPTION

PRESENTATION OUTLINE:

- Project Introduction
- Analysis 1: LEED Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results
- III. Analysis 2: Value Engineering
 - I. Problem Identification
 - II. Case Studies
 - III. Results: Cost Analysis
 - IV. Electrical Breadth
 - V. Structural Breadth
- IV. Analysis 3: Schedule Acceleration
 - I. Problem Identifications
 - II. Results
- V. Analysis 4: BIM Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results
- VI. Conclusion
- VII. Acknowledgements
- VIII. Appendices

Scenario I:Precautionary and Reaction Plan

Cost Benefits

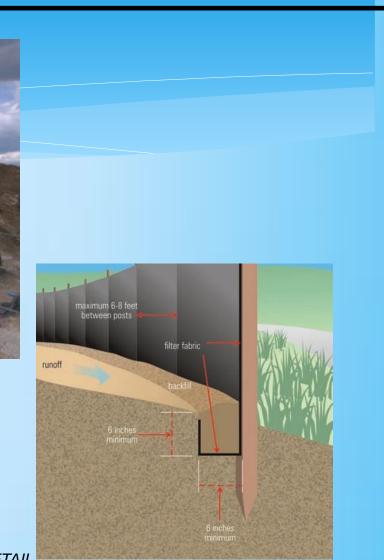
- Cost saving of **98.37%** compared with \$156,275
- **87.49%** of the cost saving is from the material and labor

Schedule Benefits

- Total Durations = 30 hours / 8 hours per day = 3.75 days per crew member (round up to 4 days)
- Duration with 4 working crews = Total Durations / 4 crew members = 1 day
- **95%** saving on schedule

Cost Analysis

31 25 14.16	Stabiliz	zation	Measures	s for E	rosion a	nd Sedi	mentat	ion	Control		
, , , , , , , , , , , , , , , , , , ,									Total		
	Daily	Labor						Tot	Include	Total	Total
ltem	Output	Hrs	Quantity	Unit	Material	Labor	Equip.	al	O&P	Cost	Days
Slope Stakes (3'-											
5' Interval)	-	-	739	Ea.	0.11	-	-	0.11	0.12	88.63	-
Silt Fence 3'											
High	1600	0.01	2954	LF.	0.24	0.37	-	0.61	0.83	2452.09	4


Analysis III: Schedule Acceleration

_	
VS	

SOIL RUN-OFF TO NEIGHBORING ROAD

Total Cost of the Precautionary Plan = \$88.63 + \$2452.09 = \$2540.72

CHERRY Q. LU CONSTRUCTION OPTION

PRESENTATION OUTLINE:

- Project Introduction
- Analysis 1: LEED Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results
- III. Analysis 2: Value Engineering
 - I. Problem Identification
 - II. Case Studies
 - III. Results: Cost Analysis
 - IV. Electrical Breadth
 - V. Structural Breadth
- IV. Analysis 3: Schedule Acceleration
 - I. Problem Identifications
 - II. Results
- V. Analysis 4: BIM Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results
- VI. Conclusion
- VII. Acknowledgements
- VIII. Appendices

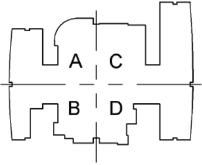
Scenario II: SIPS Method

SIPS

- A short interval production schedule (SIPS) is based upon repeatable construction activities that can be detailed by tasks and work days and then scheduled sequentially.
- Due to the equivalent durations of each activity, a matrix can clearly reflect a direct flow of work from one activity to the next in a typical area.
- Fast-tracked projects.

Project Features

- Symmetry of building structure
- Similar design of two wings •
- Two-stories above ground
- Lack of proactive planning
- Rescheduling activities due to weather impacts
- Delay of project start date due to the extension of decision process and the demolish project prior to the start of construction
- Limited learning curve due to weather impact
- Extra material staging, equipment moving time due to weather impact •


Benefit of SIPS implementation is limited.

Analysis III: Schedule Acceleration

• Multiple change orders for value engineering or other purposes after start of construction

SOIL RUN-OFF TO NEIGHBORING ROAD

CONSTRUCTION SEQUENCING DIAGRAM

CHERRY Q. LU CONSTRUCTION OPTION

PRESENTATION OUTLINE:

- Project Introduction
- Analysis 1: LEED Implementation
 - I. Problem Identification
 - Case Studies
 - III. Results
- III. Analysis 2: Value Engineering
 - I. Problem Identification
 - II. Case Studies
 - III. Results: Cost Analysis
 - IV. Electrical Breadth
 - V. Structural Breadth
- IV. Analysis 3: Schedule Acceleration
 - I. Problem Identifications
 - II. Results
- V. Analysis 4: BIM Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results
- VI. Conclusion
- VII. Acknowledgements
- VIII. Appendices

Scenario III: Last Planner System

Last Planner System

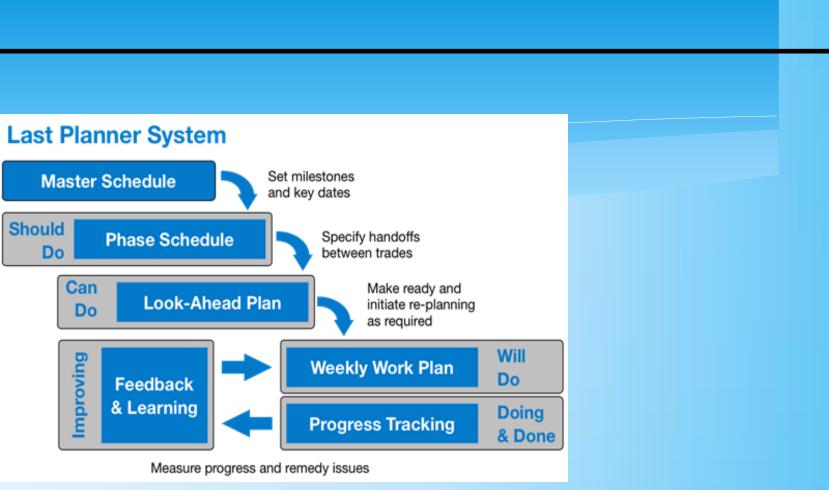
- A very collaborative planning process developed by the Lean Construction Institute.
- A process that works backwards from the project's turnover date and the last activity in the sequence towards the current time and completion stage.
- The most current activity will be defined an activity further downstream in the activity sequence.
- Requires very high commitment and promises from the project team, especially the management team.

Project Features

- Need of a recovery plan from the weather impact
- High commitment from the project team after the impact

Method Implementation

- trade.


Analysis III: Schedule Acceleration

- Weekly meeting on schedule catch up
- Adoption of extra crews and extra working time

• New backward inducted project schedule can be developed with updated schedules of each

• Phase schedule, look-ahead plans, and weekly work plans can be developed and followed-up.

Implementation of Last Planner Method is highly recommended.

CHERRY Q. LU | CONSTRUCTION OPTION

PRESENTATION OUTLINE:

- Project Introduction
- I. Analysis 1: LEED Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results
- III. Analysis 2: Value Engineering
 - I. Problem Identification
 - II. Case Studies
 - III. Results: Cost Analysis
 - IV. Electrical Breadth
 - V. Structural Breadth
- IV. Analysis 3: Schedule Acceleration
 - I. Problem Identifications
 - II. Results
- V. Analysis 4: BIM Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results
- VI. Conclusion
- VII. Acknowledgements
- VIII. Appendices

Summary of Analysis III

Precautionary Plan

- Huge cost and schedule saving
- Highly recommended

SIPS

- Insufficient planning time: limited preparation.
- Limited project scope: waste of management resource.
- Unforeseen schedule delay: lost value of learning curve.
- Relatively high value of change orders: complication of schedule planning.
- Not recommended

Last Planner System

- Recover the lost schedule
- Highly recommended

Advantages

Disadvantages

Implementation of Twin Rivers

Implementation or Public Educational Facility

Analysis III: Schedule Acceleration

	Precautionary & Reaction Plan	SIPS	Last Planner
	Cost Saving Schedule Saving	Learning Curve Collaboration between Trades	Proactive Collaboration of Management Team
	Pre-construction Planning Time	Unforeseen Project Delay Change Orders Detailed Planning	Extra Planning Time Extra commitment
'n	Huge Cost and Schedule Saving	Unforeseen Project Delay Change Orders Lack of Planning	Proactive Collaboration of Management Team Recover Lost Schedule
on al	Risks Control of Unexpected Impact on Project	Pre-fabrication Repetitive tasks Collaboration Sufficient Planning	Integration with Critical Path Method

Installation of normal silt fencing is highly recommended.

CHERRY Q. LU CONSTRUCTION OPTION

PRESENTATION OUTLINE:

- Project Introduction
- Analysis 1: LEED Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results
- III. Analysis 2: Value Engineering
 - I. Problem Identification
 - II. Case Studies
 - III. Results: Cost Analysis
 - IV. Electrical Breadth
 - V. Structural Breadth
- IV. Analysis 3: Schedule Acceleration
 - I. Problem Identifications
 - II. Results
- V. Analysis 4: BIM Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results
- VI. Conclusion
- VII. Acknowledgements
- VIII. Appendices

Goal of Analysis IV

- Potential benefit to operation and maintenance from BIM
- Improve construction schedule
- Minimize unexpected impact (weather)
- Improve project delivery efficiency

Project Features

- IPD Project per contract
- Lack of initial collaboration between trades
- Multiple design changes and change of orders for value engineering and other purposes
- Hearings and decision approval process from the District
- Multiple LEED Systems

Analysis IV: BIM Implementation

- Minimal integration effort in practice until severe weather impact

PLAN	DESIGN	CONST
Existing Conditions Mode	ling	
Cost Estimation		
Phase Planning		
Programming		
Site Analysis		
Design	Reviews	
	Design Authoring	
	Structural Analysis	
	Lighting Analysis	
	Energy Analysis	
	Mechanical Analysis	
	Other Eng. Analysis	
	LEED Evaluation	1
	Code Validation	
	3D Cod	ordination
		Site Utilization
		Construction Sy
		Digital Fabric
		3D Control and
Primary BIM Uses		
Secondary BIM Uses		

The Pennsylvania State University BIM Execution Planning Guide

CHERRY Q. LU CONSTRUCTION OPTION

PRESENTATION OUTLINE:

- Project Introduction
- Analysis 1: LEED Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results
- III. Analysis 2: Value Engineering
 - I. Problem Identification
 - II. Case Studies
 - III. Results: Cost Analysis
 - IV. Electrical Breadth
 - V. Structural Breadth
- IV. Analysis 3: Schedule Acceleration
 - I. Problem Identifications
 - II. Results
- V. Analysis 4: BIM Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results
- VI. Conclusion
- VII. Acknowledgements
- VIII. Appendices

Case Study I: **American Canyon High** School

Similarities:

- LEED Certified Public Middle School
- Geothermal HVAC system
- Hearing and decision process
- Renewable energy (solar)
- Fast-tracked (2 year of construction
 - time)

Uniqueness:

- Project value of \$ 160 million
- 7 two-stories buildings
- 260,000 square feet

Lessons Learned:

- testing.

Analysis IV: BIM Implementation

• BIM was used for conceptual design; clash detection and building performance

• BIM also used for daylighting design.

• BIM aided in the erection of steel member for the project

American Canyon High School, CA

CHERRY Q. LU CONSTRUCTION OPTION

PRESENTATION OUTLINE:

- Project Introduction
- Analysis 1: LEED Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results
- III. Analysis 2: Value Engineering
 - I. Problem Identification
 - II. Case Studies
 - III. Results: Cost Analysis
 - IV. Electrical Breadth
 - V. Structural Breadth
- IV. Analysis 3: Schedule Acceleration
 - I. Problem Identifications
 - II. Results
- V. Analysis 4: BIM Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results
- VI. Conclusion
- VII. Acknowledgements
- VIII. Appendices

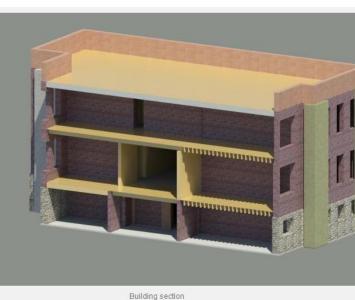
Case Study II: Whatcom Middle School

Similarities:

- Re-construction of previously existed school
- Symmetry structural
- Aggressive schedule

Uniqueness:

- Complex amalgam of the building
- Established a LEED study committee
- A vehicle for local business and professional leaders to lend their expertise
- toward school construction.


Lessons Learned:

- Major use is during the construction phase
- Colored-coded material
- Improvement of project team coordination to resolve the problem of design updates

Analysis IV: BIM Implementation

Color-coded material assignments

WHATCOM MIDDLE SCHOOL, WA

CHERRY Q. LU CONSTRUCTION OPTION

PRESENTATION OUTLINE: I. Project Introduction	Owner Involvement				BIN	A Goals		BIM and IPD		
II. Analysis 1: LEED Implementation	Phase		End Date							
I. Problem Identification		Date		Involv	Priority	/				
II. Case Studies				ement	(1-5)				BIM	IPD
III. Results					1 - Very	Goal Description/				Share Critical
III. Analysis 2: Value Engineering	Project Planning Phas	3/24/200	12/9/200	Y				Advantages	Fast-Paced Schedule	Information
I. Problem Identification		9	9		Importa			Auvantages	Fast-Paced Schedule	IIIOIIIIduoii
II. Case Studies	Schematic Design Phas	e 12/9/200	6/1/2010	Y	nt	objectives	Potential BIM Uses			
III. Results: Cost Analysis		9				Accurate 3D Record	Record Model, 3D			Lack of Actual
IV. Electrical Breadth	Design Development Ph	ase 3/1/2010	9/6/2010	Y	1	Model for Project Team	Design/MEP Coordination	Disadvantages	Limited Knowledge	Coordination
V. Structural Breadth	Construction Documen	ts 4/23/201	5/5/2011	Y		Increase Effectiveness of	Design Authoring, Design			coordination
IV. Analysis 3: Schedule Acceleration	Phase	О			1	Design	Reviews			
I. Problem Identifications	Bidding Phase	5/25/201	8/225/11	Y		Increase Field	Design Reviews, 3D /MEP	Implementation on	Fast-Paced Schedule	
II. Results		0			2	Productivity	Coordination	- Twin Rivers		Enhance Collaboration
V. Analysis 4: BIM Implementation	Construction Administra	tion 7/8/2010	3/24/201	Y		Increase effectiveness of	Engineering Analysis, LEED		Develop O&M Schedule	Enhance Collaboration
I. Problem Identification	Phase		4		3	Sustainable Goals	Evaluation			
	Construction Phase	5/3/2012	12/13/201	Y		Lay Out Precautionary		Implementation on		
II. Case Studies		, .	3			Reaction Plan for	Design Reviews,			
III. Results	Substantial Completio	n 12/13/201	12/13/201	Ŷ	4	Unexpected Impacts	Constructability Analysis	Public Educational		Improve Project
VI. Conclusion		3	3	V		Preparation for Operation		Facility	Meet Different Project Uses	Schedule
VII. Acknowledgements	Project Close-out	13/13/201	3/24/201	Ŷ	5	and Maintainance	Management ,			
VIII. Appendices		3	4							

Analysis IV: BIM Implementation

CHERRY Q. LU CONSTRUCTION OPTION

PRESENTATION OUTLINE:

- Project Introduction
- Analysis 1: LEED Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results
- III. Analysis 2: Value Engineering
 - I. Problem Identification
 - II. Case Studies
 - III. Results: Cost Analysis
 - IV. Electrical Breadth
 - V. Structural Breadth
- IV. Analysis 3: Schedule Acceleration
 - I. Problem Identifications
 - II. Results
- V. Analysis 4: BIM Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results
- VI. Conclusion
- VII. Acknowledgements
- VIII. Appendices

A BIM plan tailed to the construction of Twin Rivers School shows benefits to both the construction, planning and the operation phase.

BIM implementation is highly recommended.

BIM USE Selection							
	Responsible Parties						
		nes.					
	Desire to	Lead		Experience			
BIM Uses per Phase	Implement (Y/N/Maybe)	Team Member	Team Members	Level (1-5) 5=High	Map Available?	Comments	
Filase		Member	Members	5-mgn	Available :	Comments	
Operations Phase							
Record Model	Y	Contractor		2	N		
						1	
			MEP Subs	1	N	Responsible for As-Built Model / Info	
			A/E	2	N	Provide input on information required	
Building							
System Analysis	Maybe	Contractor		3	N		
Building Maintenance							
Scheduling	Y	Owner		4			
Construction							
Construction Phase							
Site Utilization							
Planning	Maybe	Contractor		3	N	Staging, Temp Utilities, Crane Info	
			MEP Subs	2	N	Underground Modeling / Information	
3D Control and							
Planning 3D Design /	N						
MEP							
Coordination	Maybe	Contractor	MEP Subs	4	Y	See Project Map	

Analysis IV: BIM Implementation

CHERRY Q. LU | CONSTRUCTION OPTION

PRESENTATION OUTLINE:	
I. Project Introduction	Academic:
II. Analysis 1: LEED Implementation	Penn State Architec
I. Problem Identification	Dr. Ray Sowers
II. Case Studies	Dr. Robert Leicht
III. Results	Dr. Craig Dubler
III. Analysis 2: Value Engineering	
I. Problem Identification	Industrials:
II. Case Studies	JC Pierce LLC
III. Results: Cost Analysis	
IV. Electrical Breadth	PJ Dick INC
V. Structural Breadth	Loftus Engineers IN
IV. Analysis 3: Schedule Acceleration	Gurtner Constructio
I. Problem Identifications	
II. Results	Special Thanks:
V. Analysis 4: BIM Implementation	David Nitchkey
I. Problem Identification	Ryan Mangan
II. Case Studies	The Twin Rivers Ele
III. Results	PACE Industry Men
VI. Conclusion	My Family and Frier
VII. Acknowledgements	Wy Farmy and The
VIII. Appendices	

Acknowledgement

ectural Engineering Faculty

INC tion LLC

Elementary/Intermediate School Project Team embers ends

CHERRY Q. LU | CONSTRUCTION OPTION

PRESENTATION OUTLINE:	
I. Project Introduction	"BIM: A Better View of Ma
II. Analysis 1: LEED Implementation	"Building Information Mod
I. Problem Identification	2014.
II. Case Studies	
III. Results	"Contract DocumentsCon
III. Analysis 2: Value Engineering	"Mount Nittany Elementar
I. Problem Identification	"NCEF Resource List: Bui
II. Case Studies III. Results: Cost Analysis	List: Building Information
IV. Electrical Breadth	"Program Details." Wind E
V. Structural Breadth	
IV. Analysis 3: Schedule Acceleration	2014.
I. Problem Identifications	"State College Area School
II. Results	Apr. 2014.
V. Analysis 4: BIM Implementation	"Wind for Schools Affiliate
I. Problem Identification	2014.
II. Case Studies	
III. Results	"Wind for Schools Project
VI. Conclusion	Web. 9 Mar. 2014.
VII. Acknowledgements	
VIII. Appendices	

References

Naintenance." Facilitiesnet. N.p., n.d. Web. 16 Dec. 2013.

odeling (BIM) at Whatcom Middle School" *Reid Our Blog*. N.p., n.d. Web. Jan.

ontract Documents." AIA RSS. N.p., n.d. Web. 13 Dec. 2012.

tary." / Home Page. N.p., n.d. Web. 12 Mar. 2014.

Building Information Modeling (BIM) and Educational Facilities." NCEF Resource

on Modeling (BIM) and Educational Facilities. N.p., n.d. Web. 19 Jan. 2014.

I Energy at Penn State: Pennsylvania Wind for Schools. N.p., n.d. Web. 13 Apr.

hool District." State College Area School District / Home Page. N.p., n.d. Web. 2

ate Projects." Stakeholder Engagement and Outreach:. N.p., n.d. Web. 13 Apr.

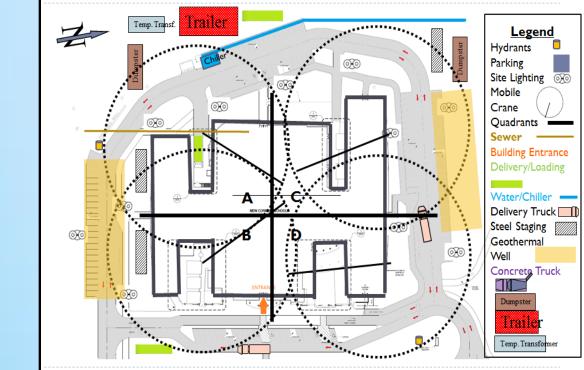

ect Gains Traction in Pennsylvania." NREL: Technology Deployment -. N.p., n.d.

CHERRY Q. LU | CONSTRUCTION OPTION

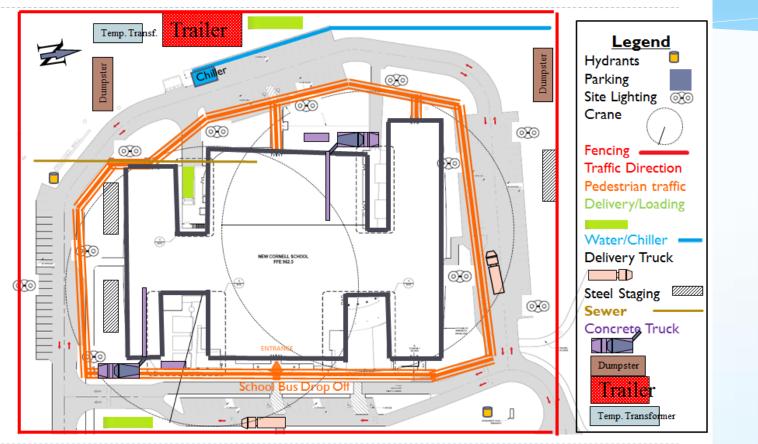
PRESENTATION OUTLINE:	
I. Project Introduction	
II. Analysis 1: LEED Implementation	
I. Problem Identification	
II. Case Studies	
III. Results	
III. Analysis 2: Value Engineering	
I. Problem Identification	
II. Case Studies	
III. Results: Cost Analysis	
IV. Electrical Breadth	Const
V. Structural Breadth	
IV. Analysis 3: Schedule Acceleration	
I. Problem Identifications	Phillips &
II. Results	Associates
V. Analysis 4: BIM Implementation	Civil Engineer
I. Problem Identification	
II. Case Studies	
III. Results	Lot
VI. Conclusion	
VII. Acknowledgements	
VIII. Appendices	

CHERRY Q. LU | CONSTRUCTION OPTION

PRESENTATION OUTLINE:

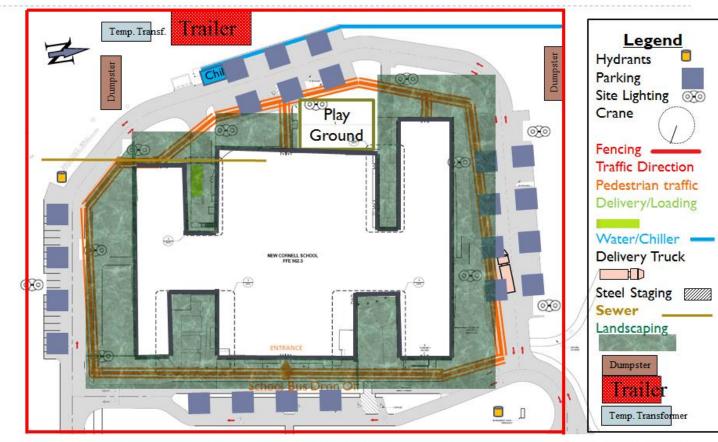

- Project Introduction
- I. Analysis 1: LEED Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results
- III. Analysis 2: Value Engineering
 - I. Problem Identification
 - II. Case Studies
 - III. Results: Cost Analysis
 - IV. Electrical Breadth
 - V. Structural Breadth
- IV. Analysis 3: Schedule Acceleration
 - I. Problem Identifications
 - II. Results
- V. Analysis 4: BIM Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results

VI. Conclusion


VII. Acknowledgements

VIII. Appendices

Steel Erection Plan


Site Traffic Plan

Appendices

Site Logistics and Layout Plan

Finish Phase Site Plan

CHERRY Q. LU CONSTRUCTION OPTION

PRESENTATION OUTLINE:

- Project Introduction
- Analysis 1: LEED Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results
- III. Analysis 2: Value Engineering
 - I. Problem Identification
 - II. Case Studies
 - III. Results: Cost Analysis
 - IV. Electrical Breadth
 - V. Structural Breadth
- IV. Analysis 3: Schedule Acceleration
 - I. Problem Identifications
 - II. Results
- V. Analysis 4: BIM Implementation
 - I. Problem Identification
 - II. Case Studies
 - III. Results
- VI. Conclusion
- VII. Acknowledgements
- VIII. Appendices

LEED Score Cared

LEED Major McKees Elemen School I

19	2		Sustai	nable Sites
Y	?	Ν		
Y			Prereq 1	Construction Activity Pollution
Y			Prereq 2	Environmental Site Assessmen
1			Credit 1	Site Selection
4			Credit 2	Development Density and Com
		N	Credit 3	Brownfield Redevelopment
4			Credit 4.1	Alternative Transportation-Pu
1			Credit 4.2	Alternative Transportation-Bi
	1		Credit 4.3	Alternative Transportation-Lo
1	1		Credit 4.4	Alternative Transportation-Pa
1			Credit 5.1	Site Development-Protect or I
1			Credit 5.2	Site Development-Maximize (
1			Credit 6.1	Stormwater Design-Quantity
		Ν	Credit 6.2	Stormwater Design-Quality Co
1			Credit 7.1	Heat Island Effect-Non-roof
1			Credit 7.2	Heat Island Effect-Roof
1			Credit 8	Light Pollution Reduction
1			Credit 9	Site Master Plan
1			Credit 10	Joint Use of Facilities

9 1 Water Efficiency

		Prereq 1	Water Use Reduction-20% Red
		Credit 1	Water Efficient Landscaping
		Credit 2	Innovative Wastewater Techno
1		Credit 3	Water Use Reduction
	N	Credit 3	Process Water Use Reduction
6	T	Energ	y and Atmosphere

			Prereq 1	Fundamental Commissioning of
			Prereq 2	Minimum Energy Performance
			Prereq 3	Fundamental Refrigerant Man
	4		Credit 1	Optimize Energy Performance
Ī		Ν	Credit 2	On-Site Renewable Energy
			Credit 3	Enhanced Commissioning
		N	Credit 4	Enhanced Refrigerant Manage
1		N	Credit 5	Measurement and Verification
1	2		Credit 6	Green Power

Appendices

sport ntary/Intermediate Project	McKeesport, PA
Possible Point	s: 24
Drevention	
Prevention nt	
ic .	1
munity Connectivity	4
intering connectivity	1
ublic Transportation Access	4
icycle Storage and Changing Ro	80
ow-Emitting and Fuel-Efficient	
arking Capacity	2
Restore Habitat	1
Open Space	1
Control	1
ontrol	1
	1
	1
	1
	1
	1
Possible Point	5: 11
Possible Politic	
duction	
	2 to 4
ologies	2
	2 to 4
	1
Possible Point	5: 33
of Building Energy Systems	
a seneng chergy systems	
agement	
	1 to 19
	1 to 7
	2
ment	1
	2

8			Materi	als and Resources Possible Points:	13
Y			Prereg 1	Storage and Collection of Recyclables	
-		Ν	Credit 1.1	Building Reuse-Maintain Existing Walls, Floors, and Roof	1 to 2
		N	Credit 1.2	Building Reuse-Maintain 50% of Interior Non-Structural Element	51
2			Credit 2	Construction Waste Management	1 to 2
			Materi	als and Resources, Continued	
Y	?	N		,,,	
		N	Credit 3	Materials Reuse	1 to 2
2			Credit 4	Recycled Content	1 to 2
2			Credit 5	Regional Materials	1 to 2
1			Credit 6	Rapidly Renewable Materials	1
1			Credit 7	Certified Wood	1
16	1		Indoor	Environmental Quality Possible Points:	19
Υ			Prereq 1	Minimum Indoor Air Quality Performance	
Υ			Prereq 2	Environmental Tobacco Smoke (ETS) Control	
Υ			Prereq 3	Minimum Acoustical Performance	
1			Credit 1	Outdoor Air Delivery Monitoring	1
1			Credit 2	Increased Ventilation	1
1			Credit 3.1	Construction IAQ Management Plan-During Construction	1
1			Credit 3.2	Construction IAQ Management Plan-Before Occupancy	1
3	1		Credit 4	Low-Emitting Materials	1 to 4
1			Credit 5	Indoor Chemical and Pollutant Source Control	1
1			Credit 6.1	Controllability of Systems-Lighting	1
1			Credit 6.2	Controllability of Systems—Thermal Comfort	1
1			Credit 7.1	Thermal Comfort–Design	1
1			Credit 7.2	Thermal Comfort—Verification	1
1			Credit 8.1	Daylight and Views–Daylight	1 to 3
1			Credit 8.2	Daylight and Views—Views	1
1			Credit 9	Enhanced Acoustical Performance	1
1			Credit 10	Mold Prevention	1
2	4		Innova	tion and Design Process Possible Points:	6
				Inconsting in Design, Considio Title	
	1			Innovation in Design: Specific Title	1
	1			Innovation in Design: Specific Title	1
	1		-	Innovation in Design: Specific Title	1
-	1		-	Innovation in Design: Specific Title	1
1			Credit 2	LEED Accredited Professional	1
1			Credit 3	The School as a Teaching Tool	1

2 Regional Priority Credits Credit 1.1 Regional Priority: Specific Credit Credit 1.2 Regional Priority: Specific Credit N Credit 1.3 Regional Priority: Specific Credit N Credit 1.4 Regional Priority: Specific Credit

66 14 **Total**

Certified 40 to 49 points Silver 50 to 59 points Gold 60 to 79 points Platinum 80 to 110

Possible Points:	4
	1
	1
	1
	1
Possible Points:	110